The Stereoisomers of 1,3-Dithiane 1,3-Dioxides. Preparation, Configuration and Some Conformational Aspects

Shlomo Bien, ${ }^{*}$ Sol K. Celebit and Moshe Kapon
Department of Chemistry, Technion, Israel Institute of Technology, Haifa 32000, Israel

Oxidation of 1,3 -dithiane with different oxidizing agents gave the 1,3-dithiane cis- and trans-1,3dioxides 1 and 2. Their configuration and the conformational preferences of the sulphinyl oxygen atom have been determined by NMR spectroscopy and by X -ray analyses.

In connection with synthetic studies we needed to prepare the two configurational isomers, 1,3-dithiane cis- and trans-1,3dioxides 1 and 2 , as starting materials.

$1 a$

2

18

3

Although cyclic sulphoxides including substituted $1,3-\mathrm{di}-$ thiane derivatives have been the target for numerous studies of different aspects, ${ }^{1}$ data were found in the literature for the cisisomer 1 only. Mild oxidation of 1,3-dithiane 1 -oxide 3^{2} with m chloroperbenzoic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a mixture of the cisand trans-1,3-dioxides, from which the cis-isomer was separated by crystallization. ${ }^{1 c}$ On repeating this procedure, and from additional experiments on the oxidation of 1,3-dithiane or 1,3dithiane 1 -oxide with different oxidizing agents, we found some difficulty in separating satisfactorily pure isomers by fractional crystallization. Separation and purification was, however, possible by careful and tedious column chromatography on silica gel followed by crystallization. \ddagger After our work was complete, we became aware of a recent communication ${ }^{3}$ reporting the preparation of the trans-isomer by oxidation of dithiane with sodium metaperiodate (no experimental conditions or physical data given).§
With the pure isomers in our hand, their structures could then be investigated by NMR spectroscopy and X-ray crystallography. In the ${ }^{1} \mathrm{H}$ NMR spectrum the cis- and trans-isomers were expected to show a completely different pattern for the resonance of the C-2 methylene protons. Indeed, the spectrum of the higher melting isomer (m.p. 239-240 ${ }^{\circ} \mathrm{C}$) showed an AB system, centred at $\delta 4.58$ due to $\mathrm{C}(2)=\mathrm{H}_{2}$. On the other hand, the spectrum of the lower melting isomer (m.p. $182-183^{\circ} \mathrm{C}$)

[^0]

Fig. 1. ORTEP ${ }^{8}$ perspective drawing of 1 showing atom labels. Ellipsoids are of 50% probability.
displayed a singlet at $\delta 4.78$ due to these protons. An AB spectrum can only be attributed to a symmetrical dioxide, e.g. the $c i s$-isomer $1 \mathbf{e}$ or 1 a . If ring inversion in the dioxides is fast on the ${ }^{1} \mathrm{H}$ NMR time scale at room temperature (as it was shown for the monoxide ${ }^{1 c}$) the lower melting compound which exhibits a singlet for the C-2 protons, must be the trans-isomer 2.

Further information was obtained from ${ }^{13} \mathrm{C}$ NMR spectroscopy. An axial oxygen substituent on the sulphur in the chair conformation is known to exert a significant shielding effect on the β-carbons as compared with an equatorial sulphinyl oxygen atom (S-O). ${ }^{1 b, 4}$ This ' γ-gauche effect's ${ }^{5}$ is clearly recognized in the chemical shifts we observed at room temperature for C-5 in the dioxides 1 and 2 and in the monoxide 3: $\delta 7.9,16.6$ and 28.5, respectively. Thus, the unusually high shielding of this carbon in the cis-isomer might be suggestive, but not definitive for the diaxial conformation 1a.

The conformation of the isomeric sulphoxides in the solid state has been determined by X-ray structure analysis which also allowed a study of the geometrical changes in the dithiane ring with the mutual disposition of the $\mathrm{S}-\mathrm{O}$ bonds in the two isomers. Good single crystals were easily obtained from the trans-isomer, but much work was needed in order to obtain a few crystals suitable for X-ray from the cis-isomer.

Both isomers, as depicted in Figs. 1 and 2, adopted the more stable chair conformation. Final fractional co-ordinates are

[^1]

Fig. 2. ORTEP ${ }^{8}$ perspective drawing of 2 showing atom labels. Ellipsoids are of 50% probability.

Table 1. Final fractional co-ordinates $\left(\times 10^{4}\right)$ for 1 . Esds are in parentheses.

Atom	x	y	z
$\mathbf{S}(1)$	$4258(2)$	$-2821(3)$	$2175(4)$
$\mathrm{C}(2)$	$3390(10)$	$-628(15)$	$3402(19)$
$\mathrm{S}(3)$	$1677(2)$	$-180(3)$	$2221(5)$
$\mathrm{C}(4)$	$902(10)$	$-2581(15)$	$3183(20)$
$\mathrm{C}(5)$	$1589(9)$	$-4363(15)$	$1866(20)$
$\mathrm{C}(6)$	$2978(10)$	$-4721(15)$	$3083(25)$
$\mathrm{O}(7)$	$4302(6)$	$-2800(10)$	$-927(11)$
$\mathrm{O}(8)$	$1669(7)$	$-108(11)$	$-926(14)$

Table 2. Final fractional co-ordinates $\left(\times 10^{4}\right)$ for 2 . Esds are in parentheses.

Atom	l $l$$l$		
S(1)	$4224(2)$	$181(2)$	$2086(2)$
$\mathrm{C}(2)$	$3389(7)$	$-1248(7)$	$3296(9)$
$\mathrm{S}(3)$	$2075(2)$	$-376(2)$	$4378(2)$
$\mathrm{C}(4)$	$938(6)$	$146(8)$	$2519(9)$
$\mathrm{C}(5)$	$1587(6)$	$1376(7)$	$1444(8)$
$\mathrm{C}(6)$	$2746(7)$	$703(8)$	$626(8)$
$\mathrm{O}(7)$	$4543(4)$	$1615(5)$	$3207(6)$
$\mathrm{O}(8)$	$1440(4)$	$-1764(5)$	$5165(6)$

Table 3. Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for 1.

$S(1)-C(2)$	$1.80(1)$	$\mathrm{S}(3)-\mathrm{C}(4)$	$1.81(1)$
$\mathrm{S}(1)-\mathrm{C}(6)$	$1.82(1)$	$\mathrm{S}(3)-\mathrm{O}(8)$	$1.509(7)$
$\mathrm{S}(1)-\mathrm{O}(7)$	$1.487(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.51(1)$
$\mathrm{C}(2)-\mathrm{S}(3)$	$1.817(9)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.52(1)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(6)$	$98.4(4)$	$\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{O}(8)$	$109.0(4)$
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{O}(7)$	$108.4(4)$	$\mathrm{C}(4)-\mathrm{S}(3)-\mathrm{O}(8)$	$107.3(4)$
$\mathrm{C}(6)-\mathrm{S}(1)-\mathrm{O}(7)$	$106.2(4)$	$\mathrm{S}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.2(6)$
$\mathrm{S}(1)-\mathrm{O}(2)-\mathrm{S}(3)$	$120.2(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.5(8)$
$\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{C}(4)$	$97.9(4)$	$\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$113.8(7)$

presented in Tables 1 and 2 and important bond lengths and angles are shown in Tables 3 and 4.* The most interesting finding was the syn-diaxial conformation 1a in the cis-isomer with remarkable distortion in the dithiane ring. This conformation introduces a local crowded environment on the ring

Table 4. Selected bond lengths $/ \AA$ and angles $/{ }^{\circ}$ for 2.

S(1)-C(2)	1.804(6)	$\mathrm{S}(3)-\mathrm{C}(4)$	1.794(6)
$\mathrm{S}(1)-\mathrm{C}(6)$	$1.794(6)$	$\mathrm{S}(3)-\mathrm{O}(8)$	1.498(4)
$\mathrm{S}(1)-\mathrm{O}(7)$	1.511(4)	C(4)-C(5)	$1.534(9)$
$\mathrm{C}(2)-\mathrm{S}(3)$	1.799(7)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.495(9)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(6)$	97.4(3)	$\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{O}(8)$	104.4(2)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{O}(7)$	106.5(2)	$\mathrm{C}(4)-\mathrm{S}(3)-\mathrm{O}(8)$	107.0(2)
$\mathrm{C}(6)-\mathrm{S}(1)-\mathrm{O}(7)$	106.2(3)	$\mathrm{S}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	111.8(4)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{S}(3)$	113.0(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112.7 (5)
$\mathrm{C}(2)-\mathrm{S}(3)-\mathrm{C}(4)$	96.1(3)	$\mathrm{S}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	113.7(4)

Table 5. Selected torsion angles $/{ }^{\circ}$ for 1 and 2.

	1	2
$S(1)-C(2)-S(3)-C(4)$	54.3	65.9
$C(2)-S(3)-C(4)-C(5)$	-56.7	-63.6
$S(3)-C(4)-C(5)-C(6)$	71.4	69.6
$C(4)-C(5)-C(6)-S(1)$	-70.2	-67.2
$C(5)-C(6)-S(1)-C(2)$	54.8	59.6
$C(6)-S(1)-C(2)-S(3)$	-53.4	-63.7

due to the repulsive interactions between the polarized $\mathrm{S}-\mathrm{O}$ bonds. The strain is relieved by an elongated $S(1) \cdots S(3)$ distance of $3.140 \AA$ across the ring as compared with the normal value of $3.005 \AA$ in the unstrained trans-isomer 2 . Also, the bond angle $S(1)-C(2)-S(3)$ is more opened in the cis than in the trans isomer, the angles being 120.2° and 113.0° respectively. The ring in the cis isomer is more flattened in the crowded region as indicated by the smaller absolute torsion angles around the bonds $S(1)-C(6), S(1)-C(2), C(2)-S(3)$ and $S(3)-C(4)$ (see Table 5). The overall geometry of the unstrained trans-isomer 2 is similar to that found in a number of substituted 1,3-dithiane-1,3dioxides ${ }^{1 b, g, h}$ none of them having the syn-diaxially disposed $\mathrm{S}-\mathrm{O}$ bonds.

It is important to note the similarity between our cis-isomer 1 and 2,2-diphenyl-1,3-dithiane cis-1,3-dioxide, the structure of which has been determined earlier by Bryan et al. ${ }^{6}$ This highly strained molecule was found to be diaxial in the crystal with an elongated $S(1) \cdots S(3)$ distance of $3.171 \AA$ and also exhibited a high shielding ($\delta 9.37$) of $\mathrm{C}-5$ in the ${ }^{13} \mathrm{C}$ NMR spectrum. On the other hand, in the 2-phenyl-1,3-dithiane trans-1,trans-3-dioxide (having also a syn alignment of the $\mathrm{S}-\mathrm{O}$ groups), $\mathrm{C}-5$ was significantly less shielded ($\delta 13.8$) and in the crystal, the molecule showed the diequatorial dioxide conformation. ${ }^{1 g}$

In spite of these and some other supporting examples, ${ }^{4 c}$ it would, however, be mistaken to decide about the conformational preferences of 1,3 -dithiane-1,3-dioxides in solution simply by comparing their conformation in the crystal and the chemical shift values of $\mathrm{C}-5$ in their ${ }^{13} \mathrm{C}$ NMR spectra measured at room temperature. The ultimate decision between the e, e or a, a conformations le or 1 a in solution is theoretically possible both by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR studies at low temperature. Although solubility problems prevented us from performing these measurements, the recent observation ${ }^{3}$ regarding the solubility of the trans-isomer in mixtures of pyridine and THF might be helpful in future studies.

The possible influence of the oxidizing agent on the cis, trans

[^2]ratio of the dioxides was investigated by using m-chloroperbenzoic acid, sodium metaperiodate and ozone. Examination of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product (before chromatography) by area measurement of the $\mathrm{C}(2) \mathrm{H}_{2}$ signal at $\delta 4.58$ (AB system) versus $\delta 4.78$ (singlet) showed the preferential formation of the trans-isomer ($65-75 \%$) with all three oxidizing agents. Aggarwal, in his communication, reports that detailed studies of the oxidation of dithiane with sodium metaperiodate led to a selectivity of $95: 5$ in favour of the trans-isomer (details will be published elsewhere). ${ }^{3}$ Different reaction conditions (solvent, temperature, etc.) might be responsible for the discrepancy in the cis, trans ratios observed by us and those reported by Aggarwal. After our aim of separating the pure isomers had been achieved, no further attempt was made either to improve stereoselectivity or change the isomer ratio.

Experimental

M.p.s were measured in sealed capillaries and are uncorrected. IR spectra were recorded with a Perkin-Elmer Infracord spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on a Varian T-60 spectrometer for solutions in trifluoroacetic acid, with tetramethylsilane as internal reference. ${ }^{13} \mathrm{C}$ NMR spectra were measured in the Fourier transform mode at 25.2 MHz on Varian XL-100 spectrometer.

Oxidation of 1,3-Dithiane with m -Chloroperbenzoic Acid.-A solution of m-chloroperbenzoic acid $(85 \% ; 20.3 \mathrm{~g}, 0.10 \mathrm{~mol})$ in chloroform ($300 \mathrm{~cm}^{3}$) was added dropwise during $c a .1 \mathrm{~h}$ to a stirred solution of 1,3 -dithiane ($6.0 \mathrm{~g}, 0.05 \mathrm{~mol}$) in chloroform ($400 \mathrm{~cm}^{3}$), keeping the temperature at $0-5^{\circ} \mathrm{C}$. Stirring was continued for 15 min at the same temperature, then dry ammonia was bubbled through the solution for 2 h at $0^{\circ} \mathrm{C}$. The precipitate which formed was removed by filtration and the solvent was evaporated to yield a white solid (6.78 g), m.p. $150-$ $156^{\circ} \mathrm{C}$. TLC on silica with chloroform-methanol (6:1) showed two major and one minor spots.
An aliquot (4.0 g) of the mixture was column chromatographed on silica gel (Woelm, deactivated with 10% water; 440 g). Elution with chloroform-methanol (40:1) gave small amounts (75 mg) of a solid, m.p. 202-204 ${ }^{\circ} \mathrm{C}$, with IR absorption bands typical of a sulphone; this was not investigated further. Further elution afforded a mixture $(610 \mathrm{mg})$ of the sulphone and the trans-dioxide 2 followed by 1,3-dithiane trans-1,3-dioxide 2 itself (800 mg), m.p. $182-183^{\circ} \mathrm{C}$ (from absolute EtOH) (Found: $\mathrm{C}, 31.7$; $\mathrm{H}, 5.30 ; \mathrm{S}, 42.2 . \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, 31.55 ; $\mathrm{H}, 5.29$; S, $42.12) ; v_{\max }(\mathrm{KBr}) 1000,1020$ and $1030 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 2.90(2 \mathrm{H}, \mathrm{m})$, $3.50(4 \mathrm{H}, \mathrm{m})$, and $4.78(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{H}_{2} \mathrm{O}\right) 16.6(\mathrm{C}-5), 48.3(\mathrm{C}-4,6)$ and 61.7 (C-2).
Elution was then continued with chloroform-methanol ($40: 2$) to yield a mixture (740 mg) of the trans- and cis-dioxides followed by a fraction of 1,3-dithiane-cis-1,3-dioxide $1(980 \mathrm{mg})$, m.p. $239-240^{\circ} \mathrm{C}$ (from absolute MeOH) (lit., ${ }^{1 \mathrm{c}} 215-216^{\circ} \mathrm{C}$) (Found: C, 31.6; H, 5.3; S, 41.9. Calc. for $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 31.55; H, 5.3; $\mathrm{S}, 42.1$); $v_{\max }(\mathrm{KBr}) 1000,1025$ and $1035 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 2.25(1 \mathrm{H}$, $\mathrm{m}), 3.46(5 \mathrm{H}, \mathrm{m})$, and $4.58(2 \mathrm{H}, \mathrm{AB}, J 13.0 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(\mathrm{H}_{2} \mathrm{O}\right) 7.9(\mathrm{C}-$ 5), 46.6 (C-4, 6) and 56.8 (C-2).

In the crude reaction mixture (before the chromatography) the cis-and trans-dioxides were present in the ratio (NMR spectroscopy) of $35: 65$, respectively.

Oxidation of 1,3-Dithiane with Sodium Metaperiodate.-A solution of sodium metaperiodate $(7.1 \mathrm{~g}, 0.03 \mathrm{~mol})$ in water (52 cm^{3}) was added dropwise over 1 h to a stirred solution of dithiane ($2.0 \mathrm{~g}, 0.017 \mathrm{~mol}$) in methanol $\left(250 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$. After being stirred for an additional hour at room temperature, the reaction was filtered and evaporated to give a product $(5.40 \mathrm{~g})$ contaminated with inorganic materials. Continuous
extraction of an aliquot (2.84 g) of this product with chloroform for 5 days and evaporation of the solvent gave the mixture (0.86 g ; m.p. $168-172^{\circ} \mathrm{C}$) of the cis- and trans-dioxides 1 and 2 in the ratio (NMR spectroscopy) 30:70, respectively.

Oxidation of 1,3-Dithiane with Ozone.-Ozone was bubbled into a stirred solution of 1,3 -dithiane ($1.20 \mathrm{~g}, 0.01 \mathrm{~mol}$) in methylene dichloride $\left(130 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$. The reaction was monitored by TLC (silica; $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 6: 1$) and was complete in 40 min . The mixture was allowed to warm to room temperature, the solvent was evaporated under reduced pressure and the oily product (1.40 g) was dissolved in CHCl_{3} $\mathrm{MeOH}, 10: 1$ and filtered through a dry deactivated silica gel column. Evaporation of the solvent gave a solid residue (0.98 g ; m.p. $173-175^{\circ} \mathrm{C}$) which consisted of the dioxides 1 and 2 in the ratio (NMR spectroscopy) of 25:75, respectively.

Crystal Structure Determinations

Crystal Data for 1.- $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}_{2} \mathrm{O}_{2}, M_{\mathrm{r}}=152.2$, triclinic, $a=$ $9.861(3), \quad b=6.650(2), c=4.790(2) \AA, \alpha=91.16(5), \quad \beta=$ 89.99(5), $\gamma=91.91(5)^{\circ}, V=313.9 \AA^{3}$ (from 2θ values of 25 reflections $6.1 \leqslant 2 \theta \leqslant 17.6^{\circ}$), $Z=2, \quad D_{\mathrm{c}}=1.611 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=160, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.69 \mathrm{~mm}^{-1}, \lambda^{\mathrm{c}}=0.7107 \AA$, space group $P \overline{1}, T=20^{\circ} \mathrm{C}$.

Data collection and processing. Philips PW 1100/20 fourcircle diffractometer: graphite monochromatized $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, $\omega / 2 \theta$ scan mode, 2θ max 50°, index ranges $h-11$ to 11 , $k-7$ to $7, l 0$ to 5 , scan speed $1^{\circ} \omega \min ^{-1}$, scan width $1.2^{\circ} \omega$, no significant variations observed for three standard reflections, no absorption corrections; 1097 reflections measured, 1072 unique, 820 with $F_{0} \geqslant 3 \sigma\left(F_{0}\right)\left[\sigma\left(F_{0}\right)\right.$ from counting statistics only].

Structure solution and refinement. Direct methods, ${ }^{7}$ fullmatrix refinement on F, weighting scheme $w=2.626 /\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.0.0008 F_{0}{ }^{2}\right], R=0.079, w R=0.077,105$ parameters, \max shift/esd 0.1 , final difference electron density within $\pm 0.7 \mathrm{e} \AA^{-3}$.

Crystal Data for 2.- $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}_{2} \mathrm{O}_{2}, M_{\mathrm{r}}=152.2$, monoclinic, $a=9.802(3), b=8.399(3), c=8.007(3) \AA, \beta=97.46(5)^{\circ}, V=$ $313.9 \AA^{3}$ (from 2θ values of 25 reflections $6.8 \leqslant 2 \theta \leqslant 20.6^{\circ}$), $Z=4, D_{\mathrm{c}}=1.547 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=320, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.69$ $\mathrm{mm}^{-1}, \lambda=0.7107 \AA$, space group $P 2_{1} / \mathrm{c}, T=20^{\circ} \mathrm{C}$.

Data collection and processing. Philips PW1100/20 four-circle diffractometer, graphite monochromatized $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, $\omega / 2 \theta$ scan mode, 2θ max 50°, index ranges $h-11$ to $11, k 0$ to $9, l$ 0 to 9 , scan speed $1.5^{\circ} \omega \mathrm{min}^{-1}$ scan width $1.2^{\circ} \omega$, no significant variations observed for three standard reflections, no absorption corrections; 1318 reflections measured, 1112 unique, 797 with $F_{0} \geqslant 3 \sigma\left(F_{0}\right)\left[\sigma\left(F_{0}\right)\right.$ from counting statistics only].

Structure solution and refinement. Direct methods, ${ }^{7}$ fullmatrix refinement on F, weighting scheme $w=2.045 /\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.0.0009 F_{0}{ }^{2}\right], R=0.057, w R=0.056,105$ parameters, \max shift/esd 0.4 final difference election density $\pm 0.4 \mathrm{e} \AA^{-3}$.

Acknowledgements

The authors thank Professor Dr. W. V. Philipsborn of the University of Zürich, Switzerland, for recording and help with interpretation of the ${ }^{13} \mathrm{C}$ NMR spectra. We are also grateful to Professor F. A. Carey of the University of Virginia, USA for some unpublished ${ }^{13} \mathrm{C}$ NMR data on substituted 1,3-dithiane oxides.

References

1 Leading references: (a) M. J. Cook and A. P. Tonge, J. Chem. Soc., Perkin Trans. 2, 1974, 767; (b) G. W. Buchanan and T. Durst,

Tetrahedron Lett., 1975, 1683; (c) S. A. Khan, J. B. Lambert, O. Hernandez and F. A. Carey, J. Am. Chem. Soc., 1975, 97, 1468; (d) F. A. Carey, O. D. Dayley, Jr., O. Hernandez and J. R. Tucker, J. Org. Chem., 1976, 41, 3975; (e) F. A. Carey, O. D. Dailey, Jr. and O. Hernandez, J. Org. Chem., 1976, 41, 3979; (f) A. T. McPhail, K. D. Onan and J. Koskimies, J. Chem. Soc., Perkin Trans. 2, 1976, 1004; (g) F. A. Carey, P. M. Smith, R. J. Maher and R. F. Bryan, J. Org. Chem., 1977, 42, 961; (h) M. J. Newlands, Lei Bo, A. G. Gabe and Y. Le Page, Acta Crystallogr., Sect. C, 1988, 44, 503.
2 R. M. Carlson and P. M. Helquist, J. Org. Chem., 1968, 33, 2596.
3 V. K. Aggarwal, I. W. Davies, J. Maddock, M. F. Mahon and K. C. Molloy, Tetrahedron Lett., 1990, 135.
4 (a) D. M. Frieze and S. A. Evans, J. Org. Chem., 1975, 40, 2690; (b) J. B. Lambert, D. A. Netzel, H. Sun and K. K. Lilianstrom, J. Am. Chem. Soc., 1976, 98, 3778; (c) F. A. Carey, O. D. Dailey, Jr. and W. C. Hutton, J. Org. Chem., 1978, 43, 96; (d) G. W. Buchanan, C. M. E. Cousineau and T. C. Mundell, Can. J. Chem., 1978, 56, 2019.

5 N. K. Wilson and J. B. Stothers, in Topics in Stereochemistry, eds. E. L. Eliel and N. L. Allinger, Wiley-Interscience, 1973, vol. 8, p. 1; H. Duddeck, in Topics in Stereochemistry, eds. E. L. Eliel, S. H. Wilen and N. L. Allinger, Wiley-Interscience, 1986, vol. 16, p. 219.
6 R. F. Bryan, F. A. Carey and R. W. Miller, J. Org. Chem., 1979, 44, 1540. 7 G. M. Sheldrick, SHELX77. Program for Crystal Structure Determination, University of Cambridge, England, 1977.
8 C. K. Johnson, ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Tennessee, USA, 1965.

Paper 0/02344B
Received 25th May 1990
Accepted 1st August 1990

[^0]: \dagger Present address: Dokuz Eylul University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Bornova, Izmir, Turkey.

[^1]: \ddagger By using this method the cis-isomer had a m.p. $25^{\circ} \mathrm{C}$ higher than the reported value. ${ }^{1 c}$
 § We are more grateful to one of the referees for drawing our attention to this recent publication relevant to our work.

[^2]: * Complete listings of bond lengths and bond angles, hydrogen atom co-ordinates and displacement parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details, see 'Instructions for Authors' (1990), J. Chem. Soc., Perkin Trans. 2, in the January issue. Lists of structure factor tables are available on request from the authors.

